User Manual for LogicTerm 16

Next Generation Test & Debug Tool

Model: LT16M vi.1

Copyright © 2025 LogicTerm Inc.

PUBLISHED BY LOGICTERM INC.

LogicTerm is an innovative startup focused on affordable solutions for testing and debugging
Embedded Systems. Our leading product, the LT16M, is a budget-friendly mixed-signal test and
debug station, designed for flexibility and performance. http://www.LogicTerm.com

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

Draft, Jan 2025

- -
. “»

1 Infroduction 9
1.1 The Concept 9
1.2 Use Cases and Capabilities 9
1.3 System Overview 10
2 Hardware Overview, 11
2.1 LT16M Box 11
2.2 Digital I/O Capabilities 12
2.3 User 1/O 12
24 Analog Capabilities 12
25 Power Supply 13
2.6 Safety Notes 13
3 Software OVeIVIEW 14
3.1 LTStudio IDE 14
3.2 LTStudio Control Menu 14
3.3 Supported File Types 15
3.4 Installation and USB Driver Setup 15
4 First-Time Setup 17

4.1 Connecting the LT16M to a PC 17

4.2
4.3
4.4
4.5
4.6

5.1
5.2

6.1

6.2

6.2.1
6.2.2
6.2.3
6.3

6.3.1
6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.5

6.5.1
6.6

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.7

6.7.1
6.7.2

7.1
7.2
7.3

Jumper Configuration

Verifying USB and Driver Installation
Using LTStudio: Running your first pattern!
Using LTStudio: Running your first service!
Using LTStudio: Running your first batch!

Programming Architecture

Programming Model
Dual-Level Execution
Obiject Flow Architecture

Programming Objects
Overview
Formats

Output Format Ticks o
Input Format Ticks o
Formats Syntax

Signals

SIgNals Syntax

Patterns

Pattern Syntax
Micro-Instructions
Compiler Instructions
NOTES . .

Services

Wrappers for ServiCeso

Custom Services

CreatingasService
Loggingand Exporting
Controland Automation v o
Service Invocation fromPattern o o
Best Practices o

Batch Scripts

Wrappers forBatch Scripts o o
Batchexamples

Data Logging & Analysis

Database Architecture
Overview

Database Structure

View Tables

17
17
17
18
18

20
21

22

22
23
24
24
25
25

27
28
28
39
40
40
41

54
54
54
54
55
55
55

55
56

59
59
59

74
7.5

7.6

7.6.1
7.6.2
7.6.3
7.64
7.6.5
7.6.6
7.6.7
7.6.8

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6

8.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9
10.10

Exporting Data 59
Service and Baich Integration 60
Database Tables 61
Records Table 61
Groups Table e 61
Groupsinfo Table e 61
IOFailsView Table 62
IOChangeView Table 62
IOCountersView Table 63
INfoView Table 63
AnalogDataView Table 63

Practical Examples

Quick Start Examples

LED Blinking 65
LED Blinking by changingthecycle 65
Slowdown LED Blinking using Repeats i 66
Slowdown LED Blinking using Loops oo 66
Slowdown LED Blinking by mappingtox@Q) 66
Slowdown LED Blinking by mappingtox(18) 67
Slowdown LED Blinking by using Keep and Toggle ticks 67
Seven Segment Display 67

Debugging Examples

Detecting Stuck-at Faults 69
Open Circuit Detection 69
Short Detection Between Pins 70
Using IOCounters 70
Channel snoop 70
Oscilloscope 70
Logic Analyzer 70

Production Examples

Automated Test Sequence 73
Reusable Pattern with Parameters 73
Logging and Exporting Results 73
Pass/Fail Summary 74
SPI Master Controller 74
SPI Slave Device 74
I>°C Master Controller 74
Duty Cycle measurement 74
Frequency counter 74

Analog waveform generator 74

10.11
10.12
10.13
10.14
10.15

11.1
11.2
11.3
11.4
11.5

12.1
12.2
12.3

12.4

12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7
12.4.8
12.4.9

12.5

12.5.1
12.5.2
12.5.3
1254
12.5.5
12.5.6
12.5.7
12.5.8

13.1
13.2

Melody generator

NPN Transistor Characterization
MOSFET Transistor Characterization
Flash programmer

EEPROM reader

Reference

Troubleshooting and Optimization
Connection Issues

Pattern Execution Failures

Signal Integrity

Performance Optimization

Best Practices

Definitions
Object Types
Formats Syntax
Signals Syntax
Pattern Syntax

CycCle Syntaxo
ALU Syntax . ..o
Output AssignmentSyntax i i
Control SyntaxX
[OMask SYyntaX oo e
LOgSYyntOX . ..o
Drive-only Syntax o
Branch Syntax
Compiler Instructions Syntax

Database Tables

RecordsTable
GroupsTable
GroupsinfoTable
InfoView Table
AnalogDataView Table
IOCountersViewTable
IOFqilsView Table
IOChangeView Table

Descriptions and Definitions
Descriptions and Definitions
Glossary

74
74
74
74
74

76
76
76
77
77

78
78
78

79
79
79
80
80
80
80
80
80
80

81
81
81
81
81
82
82
82
82

83
83

14.1

Index

Version History
Version History

86

w N —

2.1
22
23
24
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

The Concept
Use Cases and Capabilities
System Overview

LT16M Box

Digital I/O Capabilities
User I/O

Analog Capabilities
Power Supply

Safety Notes

LTStudio IDE

LTStudio Control Menu
Supported File Types

Installation and USB Driver Setup

Connecting the LT16M to a PC

Jumper Configuration

Verifying USB and Driver Installation
Using LTStudio: Running your first pattern!
Using LTStudio: Running your first servicel
Using LTStudio: Running your first batch!

1.1

The Concept

Have you ever thought of a system that combines the deterministic performance of RTL languages
with the flexibility of high-level scripting? The LT16M bridges this gap by offering a dual-level
programming model: low-level digital pattern generation and high-level Python scripting for
automation and analysis.

The LT16M, figure 1.1, is a comprehensive mixed-signal test and debug station designed for
embedded systems engineers, educators, and hardware developers. It enables precise control over
digital signals while allowing advanced data manipulation and visualization through Python.

www.LogicTerm.com|

Figure 1.1: LT16M box front panel

Figure 1.2: LT16M Box

1.2 Use Cases and Capabilities

The LT16M is ideal for:
* Debugging faulty circuits and integrated chips
* Prototyping digital and analog designs

10 Chapter 1. Introduction

* Mixed-signal waveform generation and capture
* Automated test sequencing and data visualization
* Educational labs and hands-on embedded systems training

1.3 System Overview
The LT16M system consists of:

* LT16M Hardware Box — Executes patterns, captures/generates analog signals, and manages
power supplies

* LTStudio IDE — A Windows-based GUI for editing, compiling, and executing patterns and
Python services

* USB Interface — Connects the PC to the LT16M for control and data exchange

Batches &
Services

Digital
JuL

LTStudio | -g@p

P

Figure 1.3: Top-level system architecture of LT16M

The LT16M integrates the capabilities of multiple instruments into one platform:
* Logic Analyzer

* Pattern Generator

* Oscilloscope

* Programmable Power Supply

This manual will guide you through setup, programming, data logging, and practical examples
to help you make the most of LT16M.

2.1 LT16M Box

+10V FVMV, FVMI
+5UA to *500mA
Azda

-10V to 10V Differential FRED Seaie
nne

ANALOG

Figure 2.1: Front panel of LT16M

The LT16M hardware is a compact, mixed-signal test and debug station designed by LogicTerm. It

integrates digital and analog I/O, power supplies, and user interface elements into a single enclosure.
¢ 16 bidirectional digital I/O (DIO) pins with LED status indicators 6)

4 digital drive-only (DO) pins (7)

2 high-speed ADCs (+10V, 200 KS/s, 16-bit) (D

2 DACs (0-10V, 1 MS/s, 16-bit) @ @

¢ Programmable Power Supply (PPS) with 7 current ranges and clamping)

12 Chapter 2. Hardware Overview

* Fixed power rails: 3.3V, 2.5V, 1.8V, 1.2V @ 200mA)
 User I/0: RGB LED (ULED) (9 and push button (UBTN)

» System status indicator can be Red (Disconnected), Green (Ready), or Blue (Running)

2.2 Digital 1/0 Capabilities

* Fully programmable at 100 MS/s real-time sample rate for DIOs

* Fully programmable at 25 MHz update rate for DOs

* 1K-entry pattern buffer (16-bit wide)

* 4K sample capture buffer

* Selectable LVCMOS levels: 1.8V, 2.5V, 3.3V (via jumper, figure 2.2)
* 1mA source/sink per pin

* Integrated LEDs for all 20 digital pins

LOGICT=RM
®

result in damage or malfunction.

Q)

Connect — =
to Host 1.8V

USB20Q ~in

Figure 2.2: Back panel of LT16M showing jumper configuration

2.3 Userl/O

* UBTN: User push button checked by pattern or service
* ULED: RGB LED controlled via pattern or service

2.4 Analog Capabilities
Analog-to-Digital Converters (ADC)

* Two differential channels

* =10V input range

200 KS/s, 16-bit resolution

* 0.3 mV resolution, 1% accuracy
128 dB CMRR, 94.2 dB typical SNR
1000 MQ |l 3 pF input impedance

Digital-to-Analog Converters (DAC)

* Two single-ended channels
* 0-10V output range

2.5

2.6

2.5 Power Supply 13

* 1 MS/s update rate
* Max output current: 50 mA
* 16-bit resolution, 0.1 mA current resolution (DACI only) '

Power Supply
¢ Fixed Power Rails: 3.3V, 2.5V, 1.8V, 1.2V @ 200mA maximum current each

Programmable Power Supply (PPS)
* Voltage Range: three ranges covering 10V
* Current Ranges: +5 pA, +25 pA, £250 pA, £2.5 mA, +25 mA, £250 mA, to +500/-250 mA
(7 ranges)
* Modes: Force Voltage / Measure Voltage (FVMYV), Force Voltage / Measure Current (FVMI)
* Features: Current clamping, programmable compliance

Safety Notes

Warning 1 Always power off the LT16M before changing jumper settings. Failure to do so may
result in hardware damage or incorrect voltage levels. u

'DAC1 output voltage can drop up to 5mV depending on the load.

 oemm

3.1 LTStudio IDE

LTStudio is a Windows-based integrated development environment (IDE) designed to control the

LT16M hardware. It allows users to:
* Compile and load digital patterns
» Execute Python services and batch scripts
* Visualize and export logged data
* Manage projects and object libraries

8 LogicTerm Stucio - LTTGA V1 [CAUsers\Usen\LTSucioltestilesworki

Help

Project Manager “Bx
=4 working_projte;
ke

L D] 5 @D C Qe s oot < oneromousor < @ Q) ©) @) seck rweenien @ Ocrace

=Bx

Not connected!

Figure 3.1: LTStudio startup screen

3.2 LTStudio Control Menu

1. Connect: connects LTStudio to the LT16M hardware box via a USB cable. LT16M Status
LED changes color from Red to Green when connected.

3.3

3.4

3.3 Supported File Types 15

r ~
M LogicTerm Studio -- LT16A_V1 [C:\Users\User\LTStudio\testFiles\working_proj.Itpj] =] X
File Help

HE@ 2@ 9D ¢ Q |ptem tetfiags ~ GeneralFormats ~ oncFormatxor + @ € () (D) | Batch: testBatention) O CTRACE

Project Manager =B X cattlb

- Patterns z r .
[nested_loops N !
[test_cycles 376
D test_trigger 377 oPattern (test_calll) {
D test alu 378 dauto cycle=ddta, x=rl5, y=r0, z=rl;
[7] repeatTest 379
D paramTest 380 cycle=ddta, r0=0, rl1=10, x=r0;
™ sas o ELA] rrala=AA+ s »N=1 »1R=N-"

Figure 3.2: LTStudio control button bar

. Save project: save all files into project and compile all.

. Add object: add a new LT16M library or batch file to current project.

. Add service: add a service file to current project.

. Undo: undo last change

. Redo: redo last change after it was undone

. Find: search in current open tab

. Pattern drop-down menu: choose one of the current compiled patterns.
. Formats drop-down menu: choose one of the current compiled formats.
. Signals drop-down menu: choose one of the current compiled signals.

. Reset: reset digital pattern generator. It will bring the pattern generator to a known state.
. Start pattern: start the current selected pattern/formats/signals.

. Stop pattern: stop the running pattern.

. Pause pattern: pause the running pattern.

. Batch dropdown menu: choose one of the current batches.

. Start batch: start the selected batch.

O 00 O AW

—_ = = = = e
NN AW = O

Supported File Types

LTStudio supports the following file extensions:

e .1tlb - Library files containing Formats, Signals, and Patterns
* .1ltpy — Python service files for logging, plotting, and control
¢ .1tbh — Batch scripts for automated test sequences

Installation and USB Driver Setup

To connect LT16M to your PC, follow these steps:

Install LTStudio from https://www.LogicTerm. com/download/LTStudio
Install Zadig v2.9 or later from https://zadig.akeo.ie

Connect LT16M via USB-C to a USB 2.0 port

Power on the LT16M (Status LED turns red)

Open Zadig and select “List All Devices”

Choose LT16D (Interface 1) and install 1ibusb-win32, as seen in Figure 3.3.

SANNAEE o e

16 Chapter 3. Software Overview

K Zadig =] X
Device Options Help

USE 10/100/1000 LAN ~ \ [JEdit

USB 10/100/1000 LAN

LT16D (Interface 0)

Intel(R) Wireless Bluetooth(R)
Integrated IR Camera (Interface 2)
SDM3055

Synaptics UVWP WEDI

Plantronics Voyager Focus UC
Integrated Camera (Interface 0)

9 devices found.

Figure 3.3: Zadig showing two interfaces for LT16M.

7. Disconnect and reconnect the USB cable

8. In Device Manager, update LT16D (Interface 0) to use USB Serial Converter A, it
is different. For a successful setup, the device will appear in the device manager as Figure
34.

9. Launch LTStudio and press “Connect” — the Status LED should turn green

I & Device Manager = [m] X

! File Action View Help

@ B Hm =B EX®
> s Disk drives

| > O Display adapters

> i Firmware

> {# Human Interface Devices

> E= Keyboards

| [~ § libusb-win32 devices

| § LT16D (nterface 1)

> L1 Memory technology devices

> @ Mice and other pointing devices

> [Monitors

' Network adapters

= Print queues

= Printers

I Processors

B9 security devices

!t Software components

ﬂ Software devices

i Sound, video and game controllers

Gai Storage controllers

¥ System devices

§ Universal Serial Bus controllers
i Intel(R) USB 3.1 eXtensible Host Controller - 1.10 (Microsoft)
i Intel(R) USB 3.1 eXtensible Host Controller - 1.10 (Microsoft)
§ USB Composite Device
i USB Composite Device
§ USB Root Hub (USB 30)
§ USB Root Hub (USB 3.0)

¥ USB Serial Converter A
> USB Connector Managers

C(vvvvvvvvvy

Figure 3.4: LT16M driver configuration in Device Manager

ik él ;j;l
PO

4.1 Connecting the LT16M to a PC

To set up the LT16M, first connect the supplied power adapter, then link the device to your PC
using the included USB-C cable. Confirm that the unit is switched on, start LTStudio, and select
“Connect.” The LT16M status LED displays red when idle and changes to green after LTStudio
establishes a successful connection.

Warning 2 Use only the supplied power adapter. Using other power supplies may damage the
device or impair its performance. U

4.2 Jumper Configuration

The LT16M supports three digital I/O voltage levels: 1.8V, 2.5V, and 3.3V. These are selected using
a jumper on the back panel, refer to Figure 2.2.

Warning 3 Always power off the LT16M before changing jumper settings. Changing voltage
levels while the device is powered may cause permanent damage. u

4.3 Verifying USB and Driver Installation

After connecting the LT16M:
1. Open Device Manager on your PC, as seen in Figure 3.4.
2. Under 1ibusb-win32 devices, confirm that LT16D (Interface 1) is listed.
3. Under Universal Serial Bus controllers, confirm that USB Serial Converter A
is installed for Interface O.

4.4 Using LTStudio: Running your first pattern!

After installing the drivers, follow these steps to run your first pattern:

18 Chapter 4. First-Time Setup

1. Open LTStudio from the Start Menu or desktop shortcut. Figure 3.2 illustrates the toolbar
buttons available for different functions.
Power on LT16M and connect USB-C cable.
Click the Connect button in the toolbar.
Verity that the LT16M status LED turns green, confirming a successful connection.
Navigate to File — New Project, name the project HelloWorld, and select the desired
directory.
Create a new library via File — New Library, naming it HelloWorld_lib.
7. GotoUtilities — Templates — Patterns — Hello World Full Example - Pattern,
then copy the template text.
8. Paste the template text into HelloWorld_1ib, save the current project, and note that the new
pattern, formats, and signals now appear in their respective drop-down menus.
9. Select helloWorldPattern, helloWorldFormats, and HelloWorldSignals, then click
Start Pattern.
10. Observe that the pattern maps the 16-bit counter to the 16 DIOs, causing the DIO LEDs to
blink at varying rates.
11. Confirm that the LT16M status LED turns blue, indicating the system is running.
12. To stop the pattern, either press Stop Pattern or hold the UBTN.

Al

o

4.5 Using LTStudio: Running your first service!

The simplest way to call a hardware function outside a pattern is to call it from the "Interactive
Shell" in LTStudio. You can type hw.setUSERLED (0xff, O, 0) and hit enter to execute. You
should see the ULED in red. You may change the USERLED section 6.5.1. For creating a custom
service and call it from a pattern, please follow these steps.

1. Make sure you are connected to the LT16M.

2. Create a new service file via File — New Service, naming it HelloWorld_services.

3. GotoUtilities — Templates — Services — echo, then copy the template text.

4. Paste the template text into HelloWorld_services, save the current project, and note that
the new service now appears under services in project manager.
Hello World Full Example - Service
6. helloWorldPattern2 helloWorldFormats HelloWorldSignals helloWorldServices

e

4.6 Using LTStudio: Running your first batch!

You are now ready to explore patterns, signals, and services within LTStudio.

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Programming Model 20

Dual-Level Execution
Object Flow Architecture

Programming Objects 22
Overview

Formats

Signals

Patterns

Services

Custom Services

Batch Scripts

5.1

.

-
- —
. .

5. Programming Model /O

Dual-Level Execution

The LT16M system is built around a dual-level programming model that combines deterministic
digital control with flexible high-level scripting:

* Level 1: Pattern Execution on LT16M Patterns are compiled and executed directly on
the LT16M hardware. These patterns define precise digital signal behavior using a custom
instruction set. They are ideal for timing-critical operations and deterministic control.

* Level 2: Python Services on Host PC Python scripts run on the host PC via LTStudio.
These services can extract logged data, visualize results, control execution flow, and automate
batch operations. They provide a high-level interface for analysis and orchestration.

® Logicter Studio - LT16M. CaProdu ® LogicTerm Studio - LT16M CaProdu

st
File Utilties Help File Utilties Help

B 7 4@ D C Qpten cstomdock - Dettromss - | vetnsina: - @ QO] @ s o < @ 4 B D C Qpsem cusom.deck | Detsuormats - vesusgnas @) O @) [Buen +

| project Manager O X test batchitbh | testFlowstbh | testitbh | simplePPStbh | scratchitbh mm/—\ | roject Manager) NPNcharitoh | sampleLib.itib / system.itpy »
24> sampleltpj 5 . .

7 Uibraries
Senvice files

13/1000)+1)#5000) for 4 in e
Batch files

Formats
Signals
Symbols
Pattems
Service Funcs

Log (CHANGE) ;
 (CHANGE)

 (CHANGE)
 (CHANGE)

o o o

x
&
x

Figure 5.1: Dual-level programming model of LT16M. (Left) writing a pattern for digital signals
and low-level conditioning. (Right) writing a service script for mixed signals interaction and
high-level data manipulation.

5.2

5.2 Object Flow Architecture 21

Object Flow Architecture

The LT16M programming workflow is modular and object-oriented. Each test or debug session
typically involves the following components:

* Formats — Define timing and signal structure across cycles

* Signals — Map physical DIO pins to logical pattern outputs

» Patterns — Generate digital waveforms and call services

* Services — Python functions for logging, plotting, and control with specific return

* Batches — Python scripts that automate execution of multiple objects

This architecture allows users to build reusable libraries, automate test sequences, and integrate
digital and analog operations seamlessly.

0\ '
101110 OOA

6.1 Overview

LT16M uses a modular object model to define, execute, and automate digital and analog tests. Each
object type plays a specific role in the signal generation and data logging pipeline.

6.2 Formats

@ LogicTerm Studio -- LT16A_V1 [C:\Users\User\LTStudio\testFiles\working_proj.tpj — [m]

File Help
i HE® @ 9D ¢ Q paem tetooncn - GeneralFormats + | oncformat xor « @ €3) (D | Batch: testpatcnton G Ocrrace
R TBX || generalFunsitpy / exampleBig.tib - |

-4 working_proj ltpj
57 Libraries .
[() examplesig.ttlb s ©Formats (GeneralFormats) {
Service files 0
(-7 Batch files 1 ¢ s & 7 8 s 10 11 12 13 14 15
Formats 12
Signals 13 e _sel = [zezo , , idta , clkl , clk2 , delk , 1
Symbols 14 _FRMT = [oLLLL, , OVVVV, OLHLE oDDVV, 3
{ 15 PINI_FRMT = [oLLLL, oDDVV, 3
Patterns =
© 1€ PIN2_FRMT = [oLLLL, oDDVV, 3
| Service Funcs 17 PIN3_FRMT = [oLLLL, oDDVV, i
18 PING FRMT = [oLLLL, oDDVV, 3
1 PINS_FRMT = [oLLLL, oDDVV, 3
20 PING_FRMT = [oLLLL, oDDVV, 3
21 PIN7_FRMT = [oLLLL, oDDVV, 3
22 PINS_FRMT = [oLLLL, oDDVV, 3
23 PINS_FRMT = [oLLLL, oDDVV, 3
24 PIN1O_FRMT = [oLLLL, oDDVV, 3
| 25 PIN11_FRMT = [oLLLL, oDDVV, 3
26 PIN12_FRMT = [oLLLL, oDDVV, 3
27 PIN13_FRMT = [oLLLL, oDDVV, 3
28 PIN14_FRMT = [oLLLL, , oDDVV, 3
25 PIN1S_FRMT = [oLLLL, OLHLH, oLLHH, oDDVV, 3
20
Console =ox
|Czeating table ToFails
|czeating table xvz
Creating table CRC_BC
Creating table INSTRCNTR
Creating table USZRWORD
Creating table ProgramCode
Creating table I0Counters
|czeating table Iochange [Created]
Service files
system.ltpy
generalfuns. ltpy
Ready Not connected!

Figure 6.1: LTStudio Formats

Formats define the timing and structure of digital signals. Each format can contain up to 16
cycle configurations, and each cycle can specify output values, masks, and control flags.
* Up to 16 format definitions per pattern

7.1

7.2

7.3

74

N

l

Hﬂ_:;\\\ d
e owetes

Overview

LT16M uses an in-memory SQLite database to log digital and analog data during pattern execution.
This architecture enables fast access, structured grouping, and seamless export to external formats.

Database Structure

The database is composed of multiple tables that capture different aspects of execution:

* Records — Raw digital and analog samples

* Groups — Logical grouping of records by test phase or pattern

* Groupslnfo — Metadata for each group (name, timestamp, pattern ID)
¢ Info — Instruction info

* IOChange — Changes to pins

* AnalogData — Captured ADC samples with timestamps

* I0Counters — Per-pin counters for toggles, transitions, and activity
IOFails — Pin-level failure logs

View Tables

LTStudio provides simplified views for quick access to grouped data, as seen in figure 7.2.

Exporting Data

Users can export logged data from LTStudio in multiple formats:
* Excel (.xIsx) — Tabular export for analysis and reporting
* CSV (.csv) — Lightweight format for scripting and automation
* SQLite (.db) — Full database export for advanced querying

8.1

8.1.1

[BN e N R N R S

——
W= OO

i ‘Quick Start Examples

LED Blinking

This example demonstrates how to blink a single LED connected to a DIO pin. We will try using
different ways to acheive that in order to explore the tool’s capability and flexibility.

Setup

* Connect an LED (with series resistor) to DIO[0] or rely on the DIO integrated LED
* Set jumper to 3.3V logic level

LED Blinking by changing the cycle
In this example, we define a single format with two cycles. One cycle, called 1ed_off, is configured
as an output with all four ticks set to Low. On the other hand, the 1ed_high cycle is set to High.

When an LED is connected to the pin DIO[0] of the LT16M, the Signals mySig define what
data source should be used for this pin and what format.

When the pattern myTest starts executing, the first instruction uses the cycle 1ed_off which
sets the DIO[0] to O for all 4 ticks (40 ns). The second instruction uses the cycle 1ed_on which
sets the connected pin O to 1 for all 4 ticks (40ns). In addition, it jumps to the instruction at label
AGAIN. In summary, this will cause the pattern to toggle infinitely. Unfortunately, the toggle at
12.5MHz is too fast for humans to see.

Formats(myFrmt) {

CYCLE 0 1

FORMAT

cycle_sel = [led_off, led_onl;

LED_FRMT = [oLLLL, oHHHH 1;
}

Signals(mySig){

Al = dio(pin=0, map=0, format=LED_FRMT) ;
}

Pattern(led_blinking){
AGAIN: cycle=led_off; # 1 Cycle ON takes 40mns

9.1

N O R W =

9.2

B W N =

Detecting Stuck-at Faults

This example checks whether a pin is stuck at logic high or low.

Setup

* Connect DIO2 to the node under test
* Ensure the node is driven externally

Pattern

Pattern(stuck_pin){

TODO:

cycle=low;

cycle=1low;

cycle=low;

cycle=low, service(stop_pattern(hw));

}

Expected Behavior

If DIO2 reads the same value repeatedly, the pattern jumps to ‘Fault® and calls a Python service to
report the issue.

Open Circuit Detection

This example verifies whether a pin is floating or disconnected.

Pattern

Pattern(open_test){
TODO:

cycle=low;
cycle=low;

10.1

10.2

10.3

[N O N S

[R S

Automated Test Sequence

This example runs a full test cycle using a batch script that loads patterns, logs results, and calls
services.

Batch Script
run("PowerOnSelfTest");
wait (1) ;

run ("FunctionalTest") ;

call("log_results");
call("export_to_excel");

Expected Behavior
Executes a power-on test, followed by a functional test, then logs and exports results.

Reusable Pattern with Parameters

This example uses a parameterized pattern to test multiple devices with different configurations.

Pattern
Batch Invocation

set ("VSET", 2.5);
run("DeviceTest");

set ("VSET", 3.3);
run("DeviceTest");

Logging and Exporting Results

This example shows how to log data and export it to Excel for reporting.

11.1 Connection Issues

If LTStudio fails to connect to LT16M:
* Verify USB-C cable and port (use USB 2.0 if possible)
* Confirm power is on (status LED should be red or green)
Check Device Manager for correct drivers:
— Interface 1: 1ibusb-win32
— Interface 0: USB Serial Converter A
Reinstall drivers using Zadig if needed
Restart LTStudio and reconnect

11.2 Pattern Execution Failures

Common causes:
» Syntax errors in pattern code
» Missing signal or format definitions
* Invalid register usage or branching
» Unreachable service calls

Tips
» Use LTStudio’s compiler messages to locate errors
* Test patterns incrementally
* Validate signal mappings before execution
* Verify with known patterns

11.3 Signal Integrity

To improve digital signal quality:
¢ Use short, shielded cables

- 12. Definitions

Object Types

* Format — Defines timing and signal behavior

* Signal — Maps logical bits to physical pins

» Pattern — Sequence of instructions executed on LT16M
 Service — Python function executed on host PC

* Batch — Python script automating multiple objects

Formats Syntax

Formats Object Syntax:

FormatsObj := Formats(<validName>){<format_header>; <formatSel_def; ...>}
validName := [a-zA-Z_][a-zA-Z0-9_]*

list(<items>) := [<itemO>, <iteml>, ...]

format_header := cycle_sel=list(<validNames>);

formatSel_def := validName=list(<cycle_formats>);

cycle_format := <dir><tick><tick><tick><tick>

dir := [io]

tick := [LHDVKTMZ]

Reserved Keywords:
Formats cycle_sel

Signals Syntax

Signals Object Syntax:

SignalsObj := Signals(<validName>){<[PinAssignment], ...>}

validName 1= [a-zA-Z_] [a-zA-Z0-9_]*

PinAssignment := PinLabel=pinType(pin=<PinNum>, map=<DataSource>, format=<FormatSel>);
PinLabel := validName

:= Must be a valid variable name, e.g., SEL, CS1, WR_EN, _PIN1.
pinType 1= [dio]

13.1

Descriptions and Definitions

ADC - Analog-to-digital converter

ATPG - Algorithmic Test Pattern Generator
DAC - Digital-to-analog converter

DIO - Digital input/output pin

DO - Digital Drive-only pin

LT16M - LogicTerm Mixed-signal 16-pin box
LT16D - LogicTerm analog carrier board
LT16A — LogicTerm digital base board

PPS — Programmable power supply

UBTN - User button

ULED - User RGB LED

13.2 Glossary

» Pattern — A sequence of instructions executed on LT16M
* Format — Defines signal behavior per cycle

* Signal — Maps logical bits to physical pins

* Service — Python function executed on host PC

Batch — Python script that automates multiple objects

log — Micro-instruction to capture data

ALU Operations
AnalogDataView Table

Batch examples
Batch Scripts

Formats Object
Formats Syntax

GroupsTable 61

GroupsInfo Table 61
hw.configPPS........, 50
hw.getADCO ..., 50
hw.getADCIo i 50
hw.getDACIMI. 48
hw.getDbName 44
hw.getFLIMIT........... 48
hwgetGPR.............. 41
hw.getlnstrCounter...................... 41
hw.getPC... 41
hw.getPPS... 51
hw.getUSERBUTTON 43
hw.getUSERLED 42
hw.getUSERMEM 46
hw.getUSERWORD..................... 43
hwoplot........oo i 52
hwplotall o il 52
hwPrintDB............., 44
hw.printGPRs........... 41
hwarunQuery ...t 44
hw.setDACO....................oiae. 48
hwsetDACT ...t 48
hw.setFLIMITo .. 48
hw.setGroupName 45

INDEX 85

hwsetPPSVo 50

hw.setUSERLED 42

hw.setUSERMEM 46 SEED. ... 29

hw.setUSERWORD 43 SEIVICE . ot ettt et e 39

hwsleep ... 54 Service Objectsoovviviiinn.... 40

hw.waitUSERBUTTON 43 Signals Object................oiieit.. 25
SignalSyntaxooiiia. 25

InfoView Table 63

Input Format Ticks...................... 24 UBTN ... 12

IO MaskK . ..o oo 32 ULED ... 12

IOChangeVieW Table ““““““““““ 62 USB DriVer 15

IOCountersView Table 63

IOFailsView Table 62
Wrappers for Batch Scripts............... 55
Wrappers for services.................... 41

101 o 37

Log(ADC) ... 35

Log(CHANGE)..............cooii.... 33

Log(FAIL)ooii e 32

Log(FCNTRH) ..., 34

Log(FCNTRL) ..., 34

Log(INFO).......coviiiiiiiin. 34

LTIGMBOX ..o oo 11

LTStudioIDE 14

Memory AcCessovviiiiiiii.... 30

Micro-Instructionsoovo.... 28

Output Format Ticks 23

Patterns Object............... ...t 27

PPS. . 13

Random assignment..................... 30

RecordsTable 61

TEPEAL. . oo 39

14.1 Version History

* v1.0 — Initial release with core features
* v1.1 — Added PPS current clamping and ADC enhancements
* v1.2 — Improved LTStudio UI and batch scripting support

